https://ogma.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Differential transcriptional networks associated with key phases of ingrowth wall construction in trans-differentiating epidermal transfer cells of Vicia faba cotyledons https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:26903 Vicia faba cotyledons identified transfer cell specific transcriptomes associated with uniform wall and wall ingrowth deposition. All functional groups of genes examined were expressed before and following transition to a transfer cell fate. What changed were the isoform profiles of expressed genes within functional groups. Genes encoding ethylene and Ca²⁺ signal generation and transduction pathways were enriched during uniform wall construction. Auxin-and reactive oxygen species-related genes dominated during wall ingrowth formation and ABA genes were evenly expressed across ingrowth wall construction. Expression of genes encoding kinesins, formins and villins was consistent with reorganization of cytoskeletal components. Uniform wall and wall ingrowth specific expression of exocyst complex components and SNAREs suggested specific patterns of exocytosis while dynamin mediated endocytotic activity was consistent with establishing wall ingrowth loci. Key regulatory genes of biosynthetic pathways for sphingolipids and sterols were expressed across ingrowth wall construction. Transfer cell specific expression of cellulose synthases was absent. Rather xyloglucan, xylan and pectin biosynthetic genes were selectively expressed during uniform wall construction. More striking was expression of genes encoding enzymes for re-modelling/degradation of cellulose, xyloglucans, pectins and callose. Extensins dominated the cohort of expressed wall structural proteins and particularly so across wall ingrowth development. Ion transporters were selectively expressed throughout ingrowth wall development along with organic nitrogen transporters and a large group of ABC transporters. Sugar transporters were less represented. Conclusions: Pathways regulating signalling and intracellular organization were fine tuned whilst cell wall construction and membrane transporter profiles were altered substantially upon transiting to a transfer cell fate. Each phase of ingrowth wall construction was linked with unique cohorts of expressed genes.]]> Wed 11 Apr 2018 13:16:39 AEST ]]> Bottom-up physiologically-based biokinetic modelling as an alternative to animal testing https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:43304 in vitro data. The primary objective of this study was to develop and validate bottom-up PBK models of 3 HMG-CoA reductase inhibitors: rosuvastatin, fluvastatin, and pitavastatin. Bottom-up PBK models were built using the Simcyp® simulator by incorporating in vitro transporter and metabolism data (Vmax, Jmax, Km, CLint) obtained from the literature and proteomics-based scaling factors to account for differences in transporter expression between in vitro systems and in vivo organs. Simulations were performed for single intravenous, single oral, and multiple oral doses of these chemicals. The results showed that our bottom-up models predicted systemic exposure (AUC0h-t), maximum plasma concentration (Cmax), plasma clearance, and time to reach Cmax (Tmax) within two-fold of the observed data, with the exception of parameters associated with multiple oral pitavastatin dosing and single oral fluvastatin dosing. Additional middle-out simulations were performed using animal distribution data to inform tissue-to-plasma equilibrium distribution ratios for rosuvastatin and pitavastatin. This improved the predicted plasma-concentration time profiles but did not significantly alter the predicted biokinetic parameters. Our study demonstrates that quantitative proteomics-based mechanistic in vitro-to-in vivo extrapolation (IVIVE) can account for downregulation of transporters in culture and predict whole organ clearance without empirical scaling. Hence, bottom-up PBK modeling incorporating mechanistic IVIVE could be a viable alternative to animal testing in predicting human biokinetics.]]> Thu 15 Sep 2022 13:54:45 AEST ]]> Compartmentation of transport and transfer events in developing seeds https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:1974 Sat 24 Mar 2018 08:33:16 AEDT ]]> The role of zinc efflux during Acinetobacter baumannii infection https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:44159 Acinetobacter baumannii is a ubiquitous Gram-negative bacterium, that is associated with significant disease in immunocompromised individuals. The success of A. baumannii is partly attributable to its high level of antibiotic resistance. Further, A. baumannii expresses a broad arsenal of putative zinc efflux systems that are likely to aid environmental persistence and host colonization, but detailed insights into how the bacterium deals with toxic concentrations of zinc are lacking. In this study we present the transcriptomic responses of A. baumannii to toxic zinc concentrations. Subsequent mutant analyses revealed a primary role for the resistance-nodulation-cell division heavy metal efflux system CzcCBA, and the cation diffusion facilitator transporter CzcD in zinc resistance. To examine the role of zinc at the host-pathogen interface we utilized a murine model of zinc deficiency and challenge with wild-type and czcA mutant strains, which identified highly site-specific roles for zinc during A. baumannii infection. Overall, we provide novel insight into the key zinc resistance mechanisms of A. baumannii and outline the role these systems play in enabling the bacterium to survive in diverse environments.]]> Mon 10 Oct 2022 09:45:29 AEDT ]]>